
A Science Gateway to Support Research
in Spectral Graph Theory∗

Daniel Oliveira1, Carlos Magno Abreu1, Eduardo Ogasawara1,
Eduardo Bezerra1, Leonardo de Lima2

1Federal Center of Technological Education of Rio de janeiro - CEFET/RJ, Brazil

2Paraná Federal University - UFPR, Curitiba, PR, Brazil

{daniel.oliveira, ebezerra, eogasawara}@cefet-rj.br

leonardo.delima@ufpr.br, magno.mabreu@gmail.com

Abstract. Describing classes of graphs that optimize a function of the eigenval-
ues subject to some constraints is one of the topics addressed by Spectral Graph
Theory (SGT). In this paper, we propose RioGraphX, a science gateway devel-
oped on top of Apache Spark, which aims to obtain all graphs that optimize a
given mathematical function of the eigenvalues of a graph. Initial experiments
involving small graphs have pointed out optimal graphs in a reasonable com-
putational time, and also have shown that leveraging parallel processing is a
promising approach to handle larger graphs.

1. Introduction
Spectral Graph Theory (SGT) is a research area which aims to obtain structural proper-
ties of a graph from eigenvalues and eigenvectors of matrices related to its graph. Given
a graph G(V,E) with vertex set V of cardinality n and edge set E of cardinality m, a set
of matrices can be associated with G. The most used representations for graphs in SGT
are the adjacency, the Laplacian, and the signless Laplacian matrices. The largest and the
smallest non-zero eigenvalues of those matrices are strongly related to structural prop-
erties of the graph. For instance, one can cite the second smallest Laplacian eigenvalue
of a graph, called the algebraic connectivity of the graph. This parameter is associated
with the connectivity of the graph such that G is connected if and only if the algebraic
connectivity of G is positive [Mohar et al., 1991]. For other connections on the eigenval-
ues of the adjacency, Laplacian and signless Laplacian to invariants of graphs, we refer
the reader to [Cvetkovic et al., 2007], [Wilf, 1967], and [Bomze et al., 1999]. The SGT
community has increased over the last years after the very first work of Dragos Cvetkovic
thesis [Cvetković, 1971]. Since then, applications in many areas have been reported, and
in particular in Computer Science [Cvetković and Simić, 2011]. Computational tools aim-
ing to help in either proposing or refuting conjectures and describing families of graphs
satisfying some properties have been developed in the last few years. For instance, the Au-
toGraphiX [Caporossi and Hansen, 2000] is a heuristic tool which has been used to solve
many open problems in the literature and has led to the publication of over 20 papers, all
of them related to problems of SGT. This fact shows how computer systems that aid theo-
retical researchers can be useful to propose the right mathematical conjectures or to refute

∗Os autores agradecem à FAPERJ, à CAPES (código 001) e ao CNPq pelo financiamento do projeto.



them. Other relevant computational tools in SGT are NewGraph [Brankov et al., 2006],
MathChem [Vasilyev and Stevanović, 2014], and Graph6Java [Ghebleh et al., 2019]. It is
worth mentioning that all these computational tools for SGT run monolithically on desk-
top computers and none of them are available online. Besides, most of them require some
level of coding in a specific programming language. In order to verify a conjecture, one
may code routines generating all graphs for a given range of n vertices and look for coun-
terexamples, which is a very time-consuming process. The limitations of these tools can
be seen in Table 1. In fact, due to the lack of scalability, evaluating conjectures for graphs
with ten or more vertices becomes a computational barrier while using these tools.

In this paper, we propose RioGraphX, a science gateway published as a Web ap-
plication to aid SGT researchers either in the investigation of counterexamples for an
existing conjecture or in describing classes of graphs that optimize a given function under
some possible constraints. RioGraphX does an exhaustive search to find graphs in a given
range of orders that optimize some user-provided combinatorial function (also known as
extremal graphs). A workflow defined in the Apache Spark environment [Zaharia et al.,
2016] searches for extremal graphs using a parallel and distributed computational infras-
tructure, by calculating their invariants and producing a ranked list of graphs that optimize
the given function. This ranked list is finally presented to the researcher for further anal-
ysis. RioGraphX implements a workflow which integrates well-known packages, such
as NetworkX [Hagberg et al., 2008], GraphX [Xin et al., 2013], and GraphFrames [Dave
et al., 2016] and is innovative in the sense that it makes use of a scientific workflow ap-
proach with distributed and parallel processing. It is worth mentioning that Paralell BGL
[Gregor and Lumsdaine, 2005] is another alternative of parallel and distributed graph
packages, which we intend to explore in future works. Interesting features of RioGraphX
include: (i) no usage of processing resources in the user’s machine; (ii) provides an in-
teractive online user interface, where the users can formulate mathematical conjectures
and test them without coding computational routines; (iii) users can monitor the execu-
tion of their submissions. Also, a single user can submit several jobs simultaneously and
all results are displayed in the report folder area; (iv) provides a PDF report containing
the k top extremal graphs that optimize a mathematical function given as an input by the
user; (v) makes use of parallel and distribution execution (through Spark) to generate all
graphs that optimize a given function with some predefined constraints. We conducted
initial computational experiments using a conjecture proposed in the literature for graphs
with different orders and obtained reasonable speedup results.

2. The RioGraphX Science Gateway

The RioGraphX is a science gateway built on top of Spark environment and makes usage
of Python, Nauty package, NetworkX, and GraphFrames. Table 1 presents the RioGraphX
functionalities compared to five similar tools. It can be seen that it has the main features
of other tools and also presents ease of use, accessibility (via a Web interface) and paral-
lel distributed execution (integrated with Spark). The workflow of activities executed by
RioGraphX is summarized in Figure 1. The RioGraphX deals with a huge computational
challenge of a potentially large number of graphs to be processed, even for small graphs
for each job submission. In Figure 1, we describe the activities of the RioGraphX work-
flow, and how it uses Spark parallelization to distribute the processes. All invariants of a
graph implemented in the system are described in Table 2.



Table 1. Functional characteristics of SGT computational tools
Functionalities NewGraph MathChem AutoGraphiX Graph6Java RioGraphX

Manipulation of g6 files No Yes Yes Yes Yes
Interactive environment Yes No Yes No Yes

Programming skills needed No Yes No Yes No
Parallel and distributed execution No No No No Yes

Accessible from anywhere No No No No Yes
Search for extremal graphs No No Yes Yes Yes

Figure 1. The workflow implemented in RioGraphX

The front-end of RioGraphX consists of a Java WEB application where users can
create a RioGraphX account. Once authenticated, the user has access to the submission
form (see Figure 2) where configuration parameters are filled to submit the job. In step
A of the workflow, the user configures the experiment (job) related to the conjecture to
be assessed (see Figure 2). First, the analytical form of a function is typed in Latex
format. More specifically, the function has the type f(x1, x2, . . . , xt), where each xi, for
i = 1, 2, . . . , t can be one of the following graph invariants of the Table 2. After defining
the function f , the optimization type (either maximizing or minimizing f ) is defined and
also the number k of graphs that should either minimize or maximize f. Table 3 shows
the available constraints to be added to the problem. Such constraints decrease the search
space of graphs to be selected.

Through an account, the user can monitor the submission status (processing or
terminated) of all requests already made. Other screens of the system are not presented
here due to lack of space. Once a job submission is placed into the system, RioGraphX

Table 2. List of parameters available for the definition of the optimization function

Graph invariants Description

[nmin, nmax] minimum and maximum order of a graph
di i-th largest degree of a graph
λi i-th largest eigenvalue of a graph
µi i-th largest Laplacian eigenvalue of a graph
qi i-th largest signless Laplacian eigenvalue of a graph
χG chromatic number of a graph
ωG clique number of a graph



Table 3. Available constraints in RioGraphX system

Constraints Description

Graphs free of triangles generation of triangle-free graphs only
Connected Graphs generation of connected graphs only
Bipartite Graphs generation of bipartite graphs only
k number of graphs to be included in the report after execution

Figure 2. Dynamic form for job submission

runs a remote procedure to generate the corresponding graphs and, for each one of them,
the optimization function is evaluated according to the steps of Figure 1 represented in the
boxes between the vertical dashed lines. In step B, all simple graphs of order n in the range
nmin ≤ n ≤ nmax are generated. It is the object creation phase and one of the costliest
steps, in which RioGraphX make use of distributed and parallel processing on Spark. In
order to save the obtained results, the system maintains a cache of all simple connected
graphs of orders ranging from 4 to 10 in the HDFS database. Table 4 presents the number
of graphs according to its order. In the worst case, all of those graphs should be stored in
this cache. For each graph, the following information is stored: (i) a string in g6 format

Table 4. Number of connected graphs and graphs with orders from 4 to 10

Order 4 5 6 7 8 9 10
All graphs 11 34 156 1,044 12,346 274,668 12,005,168

Connected Graphs 6 21 112 853 11,117 261,080 11,716,571
% of connected graphs 54,5 61,8 71,8 81,7 90,0 95,0 97,6

representing the graph; (ii) the number of vertices; (iii) minimum degree; (iv) maximum
degree; (v) an attribute indicating whether the graph is triangle free or not; (vi) an attribute
indicating whether the graph is connected or not; (vii) an attribute indicating whether the
graph is bipartite or not. This data is loaded into the Spark processing stream through the
SparkSQL module [Armbrust et al., 2015]. In step C, also in parallel and distributed mode
between the Spark nodes, the computation of each invariant of the optimization function is



done by using the NetworkX library. In step D, the optimization function is calculated and
evaluated for each generated graph. Step E sorts the set of generated graphs, according to
the corresponding optimization function value obtained in the previous step and, in step
F, the k best graphs are selected. Finally, step G produces a summary report in a PDF
with information about each graph obtained during the search process, with their bitmap
images, which correspond to the parameters informed in step A.

3. Experimental Evaluation
The proposed architecture for testing is composed of the main node, responsible for stor-
ing the Tomcat service (which provides the WEB interface), a PostgreSQL database, and
the Spark Master environment (responsible for administering the worker nodes which per-
form the processing in a distributed and parallel fashion). All nodes are deployed using
dockers with the Alpine Linux distribution as the operating system. The master node
has 20GB of RAM, and each Worker has 20GB of RAM and six processing cores. A
Python algorithm implementing the workflow until step F was done, and speedup tests
were performed in Spark. The speedup tests measured the average time of the system
to give the optimal solution for graphs ranging from 5 to 10 vertices. Our example
considered the inequality µ2(G) + µ2(G) ≤ 2n − 2, where G is the graph comple-
ment of G. In order to test whether this inequality is true, we have used the function
f(µ2, µ2, n) = n− 2− (µ2(G) +µ2(G)) and required only connected graphs. After min-
imization, if RioGraphX returns a graph such that f(µ2, µ2, n) ≤ 0, we have a counterex-
ample, and so the conjecture will be disproved. On the other hand, if f(µ2, µ2, n) ≥ 0
for all graphs we have a stronger indication that conjecture might be true. Also, we can
take the graphs where f(µ2, µ2, n) = 0 and extend the conjecture presenting the ex-
tremal graphs. After running RioGraphX for all graphs ranging from 5 to 10 vertices, no
counterexamples were found and the obtained extremal graphs motivated the statement
of Conjecture 5 in [Grijó et al., 2019]. Table 5 shows the results of the tests with dif-
ferent numbers of workers (nodes) where we can see that the proposed conjecture was
confirmed in times considered optimal given the size of the dataset used (see Table 4), a
large number of calculations performed and the ordering of the results. We verified that
the time gain is linear between the results of one and two nodes. Linearity is lost as nodes
were added but execution times remain significant.

Table 5. Speedup tests for graphs with 5 to 10 vertices

Nodes Average execution time (seconds) Speedup
1 Node (6 cores) 1817,178 ± 0.316 1,00

2 Nodes (12 cores) 943,937 ± 5,867 1,92
4 Nodes (24 cores) 663,982 ± 41,966 2,73
8 Nodes (48 cores) 472,471 ± 16,541 3,84

4. Conclusion
We proposed RioGraphX, a science gateway to aid SGT researchers in the investigation of
accurate and detailed results of graphs and their properties that meet a given function. The
corresponding workflow comprises seven well-defined steps that are executed in parallel
and distributed inside Spark with the integration of other important tools.



Based on speedup tests, the power of the Spark applied to the proposed workflow
already demonstrates that the RioGraphX science gateway is in the path to achieve its
goal in becoming an important tool for SGT studies. There are several alternatives for
future work. First, we plan to define a more efficient search algorithm, with the possi-
ble use of some metaheuristic, in order to find extremal graphs that minimize/maximize
the user-provided combinatorial optimization function. We also plan to investigate how to
maximize parallel and distributed processing with the GraphFrames libraries and evaluate
their performance. Another goal is to evaluate performance and quality in the calculation
of invariants in larger graphs (with more than ten vertices). Moreover, we intend to inves-
tigate speedup behavior with the use of more than eight nodes to optimize the execution
time.

References
Armbrust et al. (2015). Spark sql: Relational data processing in spark. ACM.
Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum clique

problem. In Handbook of combinatorial optimization, pages 1–74. Springer.
Brankov, V., Cvetković, D., Simić, S., and Stevanović, D. (2006). Simultaneous editing

and multilabelling of graphs in system newgraph.
Caporossi, G. and Hansen, P. (2000). Variable neighborhood search for extremal graphs:

1 the autographix system. Discrete Mathematics, 212(1-2):29–44.
Cvetkovic, D., Rowlinson, P., and Simic, S. K. (2007). Eigenvalue bounds for the signless

laplacian. Publications de l’Institut Mathématique, 81(95):11–27.
Cvetković, D. and Simić, S. (2011). Graph spectra in computer science. Linear Algebra

and its Applications, 434(6):1545–1562.
Cvetković, D. M. (1971). Graphs and their spectra. Publikacije Elektrotehničkog

fakulteta. Serija Matematika i fizika, (354/356):1–50.
Dave et al. (2016). Graphframes: an integrated api for mixing graph and rela-

tional queries. In Proceedings of the Fourth International Workshop on Graph Data
Management Experiences and Systems, page 2. ACM.

Ghebleh, M., Kanso, A., and Stevanović, D. (2019). Graph6java: A researcher–friendly
java framework for testing conjectures in chemical graph theory. MATCH.

Gregor, D. and Lumsdaine, A. (2005). The parallel bgl: A generic library for distributed
graph computations. Parallel Object-Oriented Scientific Computing (POOSC), 2:1–18.

Grijó, R. et al. (2019). Nordhaus–gaddum type inequalities for the two largest laplacian
eigenvalues. Discrete Applied Mathematics, 267:176–183.

Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network structure, dynamics,
and function using networkx. Technical report, LANL.

Mohar, B., Alavi, Y., Chartrand, G., and Oellermann, O. (1991). The laplacian spectrum
of graphs. Graph theory, combinatorics, and applications, 2(871-898):12.

Vasilyev, A. and Stevanović, D. (2014). Mathchem: a python package for calculating
topological indices. MATCH Commun. Math. Comput. Chem, 71:657–680.

Wilf, H. S. (1967). The eigenvalues of a graph and its chromatic number. Journal of the
London mathematical Society, 1(1):330–332.

Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, I. (2013). Graphx: A resilient
distributed graph system on spark. ACM.

Zaharia et al. (2016). Apache spark: A unified engine for big data processing. Commun.
ACM, 59(11):56–65.


	Introduction
	The RioGraphX Science Gateway
	Experimental Evaluation
	Conclusion

